Anterior hippocampus: the anatomy of perception, imagination and episodic memory

The brain creates a model of the world around us. We can use this representation to perceive and comprehend what we see at any given moment, but also to vividly re-experience scenes from our past and imagine future (or even fanciful) scenarios. Recent work has shown that these cognitive functions — perception, imagination and recall of scenes and events — all engage the anterior hippocampus. In this Opinion article, we capitalize on new findings from functional neuroimaging to propose a model that links high-level cognitive functions to specific structures within the anterior hippocampus.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 print issues and online access

186,36 € per year

only 15,53 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Flexible reuse of cortico-hippocampal representations during encoding and recall of naturalistic events

Article Open access 08 March 2023

Embodiment in episodic memory through premotor-hippocampal coupling

Article Open access 10 September 2024

The influence of the precuneus on the medial temporal cortex determines the subjective quality of memory during the retrieval of naturalistic episodes

Article Open access 04 April 2024

References

  1. Fanselow, M. S. & Dong, H.-W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron65, 7–19 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  2. Poppenk, J., Evensmoen, H. R., Moscovitch, M. & Nadel, L. Long-axis specialization of the human hippocampus. Trends Cogn. Sci.17, 230–240 (2013). ArticlePubMedGoogle Scholar
  3. Strange, B. A., Witter, M. P., Lein, E. S. & Moser, E. I. Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci.15, 655–669 (2014). ArticleCASPubMedGoogle Scholar
  4. Moser, M.-B. & Moser, E. I. Functional differentiation in the hippocampus. Hippocampus8, 608–619 (1998). ArticleCASPubMedGoogle Scholar
  5. Chase, H. W. et al. Evidence for an anterior–posterior differentiation in the human hippocampal formation revealed by meta-analytic parcellation of fMRI coordinate maps: focus on the subiculum. Neuroimage113, 44–60 (2015). ArticlePubMedPubMed CentralGoogle Scholar
  6. Yushkevich, P. A. et al. Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: towards a harmonized segmentation protocol. Neuroimage111, 526–541 (2015). ArticlePubMedPubMed CentralGoogle Scholar
  7. Scoville, W. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry20, 11–21 (1957). ArticleCASPubMedPubMed CentralGoogle Scholar
  8. Andelman, F., Hoofien, D., Goldberg, I., Aizenstein, O. & Neufeld, M. Y. Bilateral hippocampal lesion and a selective impairment of the ability for mental time travel. Neurocase16, 426–435 (2010). ArticlePubMedGoogle Scholar
  9. Maguire, E. A., Nannery, R. & Spiers, H. J. Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain129, 2894–2907 (2006). ArticlePubMedGoogle Scholar
  10. Ding, S.-L. & Van Hoesen, G. W. Organization and detailed parcellation of human hippocampal head and body regions based on a combined analysis of cyto- and chemo-architecture. J. Comp. Neurol.523, 2233–2253 (2015). ArticlePubMedGoogle Scholar
  11. Suzuki, W. A. & Baxter, M. G. Memory, perception, and the medial temporal lobe: a synthesis of opinions. Neuron61, 678–679 (2009). ArticleCASPubMedGoogle Scholar
  12. Ding, S.-L. Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent. J. Comp. Neurol.521, 4145–4162 (2013). ArticlePubMedGoogle Scholar
  13. Rosene, D. L. & Van Hoesen, G. W. The hippocampal formation of the primate brain. Cereb. Cortex6, 345–456 (1987). ArticleGoogle Scholar
  14. McLardy, T. Some cell and fibre peculiarities of uncal hippocampus. Prog. Brain Res.3, 71–88 (1963). ArticleGoogle Scholar
  15. Amaral, D. G. & Insausti, R. in The Human Nervous System 1st edn (ed. Paxinos, R.) 711–755 (Academic Press, 1990). BookGoogle Scholar
  16. Kondo, H., Lavenex, P. & Amaral, D. G. Intrinsic connections of the Macaque monkey hippocampal formation: I. dentate gyrus. J. Comp. Neurol.511, 497–520 (2008). ArticlePubMedPubMed CentralGoogle Scholar
  17. Kondo, H., Lavenex, P. & Amaral, D. G. Intrinsic connections of the macaque monkey hippocampal formation: II. CA3 connections. J. Comp. Neurol.515, 349–377 (2009). PubMedPubMed CentralGoogle Scholar
  18. Amaral, D. G., Insausti, R. & Cowan, W. M. The commissural connections of the monkey hippocampal formation. J. Comp. Neurol.224, 307–336 (1984). ArticleCASPubMedGoogle Scholar
  19. Demeter, S., Rosene, D. L. & van Hoesen, G. W. Interhemispheric pathways of the hippocampal formation, presubiculum, and entorhinal and posterior parahippocampal cortices in the rhesus monkey: the structure and organization of the hippocampal commissures. J. Comp. Neurol.233, 30–47 (1985). ArticleCASPubMedGoogle Scholar
  20. Gloor, P., Salanova, V., Olivier, A. & Quesney, L. F. The human dorsal hippocampal commissure. Brain116, 1249–1273 (1993). ArticlePubMedGoogle Scholar
  21. O'Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res.34, 171–175 (1971). ArticleCASPubMedGoogle Scholar
  22. Fyhn, M., Molden, S., Witter, M. P., Moser, E. I. & Moser, M.-B. Spatial representation in the entorhinal cortex. Science305, 1258–1264 (2004). ArticleCASPubMedGoogle Scholar
  23. Boccara, C. N. et al. Grid cells in pre- and parasubiculum. Nat. Neurosci.13, 987–994 (2010). ArticleCASPubMedGoogle Scholar
  24. Wiener, S. & Taube, J. S. Head Direction Cells and the Neural Mechanisms of Spatial Orientation (MIT Press, 2005). BookGoogle Scholar
  25. Dumont, J. R. & Taube, J. S. The neural correlates of navigation beyond the hippocampus. Prog. Brain Res.219, 83–102 (2015). ArticlePubMedGoogle Scholar
  26. Lever, C., Burton, S., Jeewajee, A., O'Keefe, J. & Burgess, N. Boundary vector cells in the subiculum of the hippocampal formation. J. Neurosci.29, 9771–9777 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  27. Spiers, H. J. & Maguire, E. A. Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage31, 1826–1840 (2006). ArticlePubMedGoogle Scholar
  28. Ekstrom, A. et al. Cellular networks underlying human spatial navigation. Nature425, 184–188 (2003). ArticleCASPubMedGoogle Scholar
  29. Doeller, C. F., Barry, C. & Burgess, N. Evidence for grid cells in a human memory network. Nature463, 657–661 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  30. Auger, S. D., Mullally, S. L. & Maguire, E. A. Retrosplenial cortex codes for permanent landmarks. PLoS ONE7, e43620 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  31. Kjelstrup, K. B. et al. Finite scale of spatial representation in the hippocampus. Science321, 140–143 (2008). ArticleCASPubMedGoogle Scholar
  32. Keinath, A., Wang, M. & Wann, E. Precise spatial coding is preserved along the longitudinal hippocampal axis. Hippocampus24, 1533–1548 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  33. Marr, D. Simple memory: a theory for archicortex. Phil. Trans. R. Soc. Lond. B262, 23–81 (1971). ArticleCASGoogle Scholar
  34. Wikenheiser, A. M. & Redish, D. A. Decoding the cognitive map: ensemble hippocampal sequences and decision making. Curr. Opin. Neurobiol.32, 8–15 (2015). ArticleCASPubMedGoogle Scholar
  35. Johnson, A. & Redish, A. D. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci.27, 12176–12189 (2007). ArticleCASPubMedPubMed CentralGoogle Scholar
  36. Pfeiffer, B. E. & Foster, D. J. Hippocampal place-cell sequences depict future paths to remembered goals. Nature497, 74–79 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  37. Foster, D. J. & Wilson, M. A. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature440, 680–683 (2006). ArticleCASPubMedGoogle Scholar
  38. Clark, I. A. & Maguire, E. A. Remembering preservation in hippocampal amnesia. Annu. Rev. Psychol.67, 51–82 (2016). ArticlePubMedGoogle Scholar
  39. Hassabis, D., Kumaran, D., Vann, S. D. & Maguire, E. A. Patients with hippocampal amnesia cannot imagine new experiences. Proc. Natl Acad. Sci. USA104, 1726–1731 (2007). ArticleCASPubMedGoogle Scholar
  40. Mullally, S. L., Intraub, H. & Maguire, E. A. Attenuated boundary extension produces a paradoxical memory advantage in amnesic patients. Curr. Biol.22, 261–268 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  41. Hassabis, D., Kumaran, D. & Maguire, E. A. Using imagination to understand the neural basis of episodic memory. J. Neurosci.27, 14365–14374 (2007). ArticleCASPubMedPubMed CentralGoogle Scholar
  42. Addis, D. R., Wong, A. T. & Schacter, D. L. Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia45, 1363–1377 (2007). ArticlePubMedGoogle Scholar
  43. Addis, D. R., Pan, L., Vu, M.-A. A., Laiser, N. & Schacter, D. L. Constructive episodic simulation of the future and the past: distinct subsystems of a core brain network mediate imagining and remembering. Neuropsychologia47, 2222–2238 (2009). ArticlePubMedGoogle Scholar
  44. Addis, D. R., Cheng, T., Roberts, R. P. & Schacter, D. L. Hippocampal contributions to the episodic simulation of specific and general future events. Hippocampus21, 1045–1052 (2011). ArticlePubMedGoogle Scholar
  45. Addis, D. R., Knapp, K., Roberts, R. P. & Schacter, D. L. Routes to the past: neural substrates of direct and generative autobiographical memory retrieval. Neuroimage59, 2908–2922 (2012). ArticlePubMedGoogle Scholar
  46. McCormick, C., St-Laurent, M., Ty, A., Valiante, T. A. & McAndrews, M. P. Functional and effective hippocampal–neocortical connectivity during construction and elaboration of autobiographical memory retrieval. Cereb. Cortex25, 1297–1305 (2015). ArticlePubMedGoogle Scholar
  47. Zeidman, P., Mullally, S. & Maguire, E. A. Constructing, perceiving, and maintaining scenes: hippocampal activity and connectivity. Cereb. Cortex25, 3836–3855 (2015). ArticlePubMedGoogle Scholar
  48. Bonnici, H. M. et al. Detecting representations of recent and remote autobiographical memories in vmPFC and hippocampus. J. Neurosci.32, 16982–16991 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  49. Gaesser, B., Spreng, R. N., McLelland, V. C., Addis, D. R. & Schacter, D. L. Imagining the future: evidence for a hippocampal contribution to constructive processing. Hippocampus23, 1150–1161 (2013). ArticlePubMedGoogle Scholar
  50. Zeidman, P., Lutti, A. & Maguire, E. A. Investigating the functions of subregions within anterior hippocampus. Cortex73, 240–256 (2015). ArticlePubMedPubMed CentralGoogle Scholar
  51. Hassabis, D. & Maguire, E. A. Deconstructing episodic memory with construction. Trends Cogn. Sci.11, 299–306 (2007). ArticlePubMedGoogle Scholar
  52. Maguire, E. A. & Mullally, S. L. The hippocampus: a manifesto for change. J. Exp. Psychol. Gen.142, 1180–1189 (2013). ArticlePubMedPubMed CentralGoogle Scholar
  53. Spreng, N. R., Mar, R. A. & Kim, A. S. N. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci.21, 489–510 (2009). ArticlePubMedGoogle Scholar
  54. Svoboda, E., McKinnon, M. C. & Levine, B. The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia44, 2189–2208 (2006). ArticlePubMedPubMed CentralGoogle Scholar
  55. Schacter, D. L. et al. The future of memory: remembering, imagining, and the brain. Neuron76, 677–694 (2012). ArticleCASPubMedGoogle Scholar
  56. Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci.11, 49–57 (2007). ArticlePubMedGoogle Scholar
  57. Mullally, S. L. & Maguire, E. A. Counterfactual thinking in patients with amnesia. Hippocampus24, 1261–1266 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  58. Squire, L. R. & Zola-Morgan, S. The medial temporal lobe memory system. Science253, 1380–1386 (1991). ArticleCASPubMedGoogle Scholar
  59. Lee, A. C., Barense, M. D. & Graham, K. S. The contribution of the human medial temporal lobe to perception: bridging the gap between animal and human studies. Q. J. Exp. Psychol. B58, 300–325 (2005). ArticlePubMedGoogle Scholar
  60. Murray, E. A., Bussey, T. J. & Saksida, L. M. Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. Annu. Rev. Neurosci.30, 99–122 (2007). ArticleCASPubMedGoogle Scholar
  61. Lee, A. C. H. et al. Perceptual deficits in amnesia: challenging the medial temporal lobe “mnemonic” view. Neuropsychologia43, 1–11 (2005). ArticlePubMedGoogle Scholar
  62. Lee, A. C. H. et al. Specialization in the medial temporal lobe for processing of objects and scenes. Hippocampus15, 782–797 (2005). ArticlePubMedGoogle Scholar
  63. Shrager, Y., Gold, J. J., Hopkins, R. O. & Squire, L. R. Intact visual perception in memory-impaired patients with medial temporal lobe lesions. J. Neurosci.26, 2235–2240 (2006). ArticleCASPubMedPubMed CentralGoogle Scholar
  64. Hartley, T. et al. The hippocampus is required for short-term topographical memory in humans. Hippocampus17, 34–48 (2007). ArticlePubMedPubMed CentralGoogle Scholar
  65. Maguire, E. A., Intraub, H. & Mullally, S. L. Scenes, spaces, and memory traces: what does the hippocampus do? Neuroscientisthttp://dx.doi.org/10.1177/1073858415600389 (2015).
  66. Binder, J. R., Bellgowan, P. S. F., Hammeke, T. A., Possing, E. T. & Frost, J. A. A comparison of two fMRI protocols for eliciting hippocampal activation. Epilepsia46, 1061–1070 (2005). ArticlePubMedGoogle Scholar
  67. Howard, L. R., Kumaran, D., Ólafsdóttir, H. F. & Spiers, H. J. Double dissociation between hippocampal and parahippocampal responses to object-background context and scene novelty. J. Neurosci.31, 5253–5261 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  68. Lee, A. C., Scahill, V. L. & Graham, K. S. Activating the medial temporal lobe during oddity judgment for faces and scenes. Cereb. Cortex18, 683–696 (2008). ArticlePubMedGoogle Scholar
  69. Lee, A. C. H., Brodersen, K. H. & Rudebeck, S. R. Disentangling spatial perception and spatial memory in the hippocampus: a univariate and multivariate pattern analysis fMRI study. J. Cogn. Neurosci.25, 534–546 (2013). ArticlePubMedGoogle Scholar
  70. Aly, M., Ranganath, C. & Yonelinas, A. P. Detecting changes in scenes: the hippocampus is critical for strength-based perception. Neuron78, 1127–1137 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  71. Aly, M. & Yonelinas, A. P. Bridging consciousness and cognition in memory and perception: evidence for both state and strength processes. PLoS ONE7, e30231 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  72. Intraub, H. & Richardson, M. Wide-angle memories of close-up scenes. J. Exp. Psychol. Learn. Mem. Cogn.15, 179–187 (1989). ArticleCASPubMedGoogle Scholar
  73. Kim, S., Dede, A. J. O., Hopkins, R. O. & Squire, L. R. Memory, scene construction, and the human hippocampus. Proc. Natl Acad. Sci. USA112, 4767–4772 (2015). ArticleCASPubMedGoogle Scholar
  74. Chadwick, M., Mullally, S. & Maguire, E. A. The hippocampus extrapolates beyond the view in scenes: an fMRI study of boundary extension. Cortex49, 2067–2079 (2013). ArticlePubMedPubMed CentralGoogle Scholar
  75. Race, E., Keane, M. M. & Verfaellie, M. Medial temporal lobe damage causes deficits in episodic memory and episodic future thinking not attributable to deficits in narrative construction. J. Neurosci.31, 10262–10269 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  76. Robinson, J. L. et al. Neurofunctional topography of the human hippocampus. Hum. Brain Mapp.36, 5018–5037 (2015). ArticlePubMedPubMed CentralGoogle Scholar
  77. Blessing, E. M., Beissner, F., Schumann, A., Brünner, F. & Bär, K. J. A data-driven approach to mapping cortical and subcortical intrinsic functional connectivity along the longitudinal hippocampal axis. Hum. Brain Mapp.37, 462–476 (2016). ArticlePubMedGoogle Scholar
  78. Kondo, H., Saleem, K. S. & Price, J. L. Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys. J. Comp. Neurol.493, 479–509 (2005). ArticlePubMedGoogle Scholar
  79. Woollett, K. & Maguire, E. A. Acquiring “the knowledge” of London's layout drives structural brain changes. Curr. Biol.21, 2109–2114 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  80. Chebat, D.-R. et al. Alterations in right posterior hippocampus in early blind individuals. Neuroreport18, 329–333 (2007). ArticlePubMedGoogle Scholar
  81. Leporé, N. et al. Pattern of hippocampal shape and volume differences in blind subjects. Neuroimage46, 949–957 (2009). ArticlePubMedPubMed CentralGoogle Scholar
  82. Fortin, M. et al. Wayfinding in the blind: larger hippocampal volume and supranormal spatial navigation. Brain131, 2995–3005 (2008). ArticlePubMedGoogle Scholar
  83. Insausti, R. & Muñoz, M. Cortical projections of the non-entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis). Eur. J. Neurosci.14, 435–451 (2001). ArticleCASPubMedGoogle Scholar
  84. Blatt, G. J. & Rosene, D. L. Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: projections from CA1, prosubiculum, and subiculum to the temporal lobe. J. Comp. Neurol.392, 92–114 (1998). ArticleCASPubMedGoogle Scholar
  85. Maass, A. et al. Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding. Nat. Commun.5, 5547 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  86. Hafting, T., Fyhn, M., Molden, S., Moser, M. B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature436, 801–806 (2005). ArticleCASPubMedGoogle Scholar
  87. Frings, L. et al. Lateralization of hippocampal activation differs between left and right temporal lobe epilepsy patients and correlates with postsurgical verbal learning decrement. Epilepsy Res.78, 161–170 (2008). ArticlePubMedGoogle Scholar
  88. Barbas, H. & Blatt, G. J. Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus5, 511–533 (1995). ArticleCASPubMedGoogle Scholar
  89. Fudge, J. L., DeCampo, D. M. & Becoats, K. T. Revisiting the hippocampal–amygdala pathway in primates: association with immature-appearing neurons. Neuroscience212, 104–119 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  90. Aggleton, J. P., Wright, N., Rosene, D. L. & Saunders, R. C. Complementary patterns of direct amygdala and hippocampal projections to the macaque prefrontal cortex. Cereb. Cortex25, 4351–4373 (2015). ArticlePubMedPubMed CentralGoogle Scholar
  91. Maguire, E. A. Memory consolidation in humans: new evidence and opportunities. Exp. Physiol.99, 471–486 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  92. Nieuwenhuis, I. L. C. & Takashima, A. The role of the ventromedial prefrontal cortex in memory consolidation. Behav. Brain Res.218, 325–334 (2011). ArticlePubMedGoogle Scholar
  93. Aggleton, J. P. Multiple anatomical systems embedded within the primate medial temporal lobe: implications for hippocampal function. Neurosci. Biobehav. Rev.36, 1579–1596 (2012). ArticlePubMedGoogle Scholar
  94. Duvernoy, H. M. The Human Hippocampus: An Atlas of Applied Anatomy (JF Bergmann, 1988). BookGoogle Scholar
  95. Boubela, R. N. et al. fMRI measurements of amygdala activation are confounded by stimulus correlated signal fluctuation in nearby veins draining distant brain regions. Sci. Rep.5, 10499 (2015). ArticlePubMedPubMed CentralGoogle Scholar
  96. Winocur, G. & Moscovitch, M. Memory transformation and systems consolidation. J. Int. Neuropsychol. Soc.17, 766–780 (2011). ArticlePubMedGoogle Scholar
  97. Nadel, L., Winocur, G., Ryan, L. & Moscovitch, M. Systems consolidation and the hippocampus: two views. Debates Neurosci.1, 55–66 (2007). ArticleGoogle Scholar
  98. Nadel, L. & Moscovitch, M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol.7, 217–227 (1997). ArticleCASPubMedGoogle Scholar
  99. Byrne, P., Becker, S. & Burgess, N. Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev.114, 340–375 (2007). ArticlePubMedPubMed CentralGoogle Scholar
  100. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature489, 391–399 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  101. Fischl, B. et al. Predicting the location of entorhinal cortex from MRI. Neuroimage47, 8–17 (2009). ArticlePubMedPubMed CentralGoogle Scholar
  102. Nieuwenhuys, R., Huijzen, C. & Voogd, J. The Human Central Nervous System (Springer, 2008). BookGoogle Scholar
  103. Nogueira, A. B. et al. Existence of a potential neurogenic system in the adult human brain. J. Transl. Med.12, 75 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  104. Hassabis, D. & Maguire, E. A. The construction system of the brain. Phil. Trans. R. Soc. B364, 1263–1271 (2009). ArticlePubMedGoogle Scholar
  105. Schacter, D. L. & Addis, D. R. The cognitive neuroscience of constructive memory: remembering the past and imagining the future. Phil. Trans. R. Soc. B362, 773–786 (2007). ArticleGoogle Scholar
  106. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA98, 676–682 (2001). ArticleCASPubMedGoogle Scholar
  107. Buckner, R. L., Roffman, J. L. & Smoller, J. W. Brain Genomics Superstruct Project (GSP). Harvard Dataverse V10[online], (2014). Google Scholar
  108. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol.106, 1125–1165 (2011). ArticlePubMedGoogle Scholar
  109. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods8, 665–670 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  110. Spreng, R. N., Sepulcre, J., Turner, G. R., Stevens, W. D. & Schacter, D. L. Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J. Cogn. Neurosci.25, 74–86 (2013). ArticlePubMedGoogle Scholar
  111. Hayes, S. M., Salat, D. H. & Verfaellie, M. Default network connectivity in medial temporal lobe amnesia. J. Neurosci.32, 14622–14629 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  112. Bannerman, D. M. et al. Hippocampal synaptic plasticity, spatial memory and anxiety. Nat. Rev. Neurosci.15, 181–192 (2014). ArticleCASPubMedGoogle Scholar
  113. Pohlack, S. T., Nees, F., Ruttorf, M., Schad, L. R. & Flor, H. Activation of the ventral striatum during aversive contextual conditioning in humans. Biol. Psychol.91, 74–80 (2012). ArticlePubMedGoogle Scholar
  114. Marschner, A., Kalisch, R., Vervliet, B., Vansteenwegen, D. & Büchel, C. Dissociable roles for the hippocampus and the amygdala in human cued versus context fear conditioning. J. Neurosci.28, 9030–9036 (2008). ArticleCASPubMedPubMed CentralGoogle Scholar
  115. Nees, F. & Pohlack, S. T. Functional MRI studies of the hippocampus. Front. Neurol. Neurosci.34, 85–94 (2014). ArticlePubMedGoogle Scholar
  116. Li, G., Fang, L., Fernández, G. & Pleasure, S. J. The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus. Neuron78, 658–672 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  117. Perera, T. D. et al. Necessity of hippocampal neurogenesis for the therapeutic action of antidepressants in adult nonhuman primates. PLoS ONE6, e17600 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  118. Maller, J. J., Daskalakis, Z. J. & Fitzgerald, P. B. Hippocampal volumetrics in depression: the importance of the posterior tail. Hippocampus17, 1023–1027 (2007). ArticlePubMedGoogle Scholar
  119. Leary, O. F. O. & Cryan, J. F. A ventral view on antidepressant action: roles for adult hippocampal neurogenesis along the dorsoventral axis. Trends Pharmacol. Sci.35, 675–687 (2014). ArticleCASGoogle Scholar
  120. Köhler, S., Crane, J. & Milner, B. Differential Contributions of the parahippocampal place area and the anterior hippocampus to human memory for scenes. Hippocampus12, 718–723 (2002). ArticlePubMedGoogle Scholar
  121. Poppenk, J., McIntosh, A. R., Craik, F. I. M. & Moscovitch, M. Past experience modulates the neural mechanisms of episodic memory formation. J. Neurosci.30, 4707–4716 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  122. Kumaran, D. & Maguire, E. A. Which computational mechanisms operate in the hippocampus during novelty detection? Hippocampus17, 735–748 (2007). ArticlePubMedGoogle Scholar
  123. Lepage, M., Habib, R. & Tulving, E. Hippocampal PET activations of memory encoding and retrieval: the HIPER model. Hippocampus8, 313–322 (1998). ArticleCASPubMedGoogle Scholar
  124. Martin, V. C., Schacter, D. L., Corballis, M. C. & Addis, D. R. A role for the hippocampus in encoding simulations of future events. Proc. Natl Acad. Sci. USA108, 13858–13863 (2011). ArticleCASPubMedGoogle Scholar
  125. Chadwick, M. J., Jolly, A. E. J., Amos, D. P., Hassabis, D. & Spiers, H. J. A goal direction signal in the human entorhinal/subicular region. Curr. Biol.25, 87–92 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  126. Viard, A., Doeller, C. F., Hartley, T., Bird, C. M. & Burgess, N. Anterior hippocampus and goal-directed spatial decision making. J. Neurosci.31, 4613–4621 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar

Acknowledgements

The authors are supported by The Wellcome Trust. The authors thank J. Ekanayake for helpful discussions about vasculature.